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Abstract

Center-based clustering is a set of clustering problems that require finding a single element, a center, to
represent an entire cluster. The algorithms that solve this type of problems are very efficient for clustering
large and high-dimensional datasets. In this paper, we propose a similar heuristic used in Lloyd’s algorithm
to approximately solve (EMAX algorithm) a more robust variation of the k -means problem, namely the
EMAX problem. Also, a new center-based clustering algorithm (SSO-C) is proposed, which is based on a
swarm intelligence technique called Social Spider Optimization. This algorithm minimizes a multi-objective
optimization function defined as a weighted combination of the objective functions of the k -means and
EMAX problems. Also, an approximation algorithm for the discrete k -center problem is used as a local
search strategy for initializing the population. Results of the experiments showed that SSO-C algorithm is
suitable for finding maximum best values, however EMAX algorithm is better in finding median and mean
values.

Keywords: Center-Based Clustering, Approximation Algorithms, EMAX, Multi-Objective Optimization,
Social Spider Optimization.

1 Introduction

Clustering is usually considered as the most important problem in unsupervised

learning. Like any other unsupervised problem, it involves searching for patterns

and structures in unlabeled data. The goal of a clustering algorithm is to group

similar objects into sets called clusters. Due to the nature of the problem, it appears

in many research areas such as data compression, image analysis, bioinformatics,

and data mining.
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In essence, clustering is not a well defined task, but a very general problem to

be solved. For that reason, many well defined problems and algorithms have been

proposed for this task. There is a great variety of different concepts and definitions

of what a cluster is and how it can be formed. There is also no general convention

about what types of data can be clustered. So, all that diversity led to several

models of clustering [2]. A very popular one is called center-based model.

Center-based clustering is the task of representing an entire cluster by an element

called the “center” of the cluster. Although there are many variations of this prob-

lem, the basic idea is to make what is called strict partitioning clusterings, where

each element belongs to exactly one cluster. The most well-known center-based

clustering algorithm is k -means or Lloyd’s algorithm [23]. This is one of the most

used algorithms probably because of its simplicity and the reasonably good results

it provides in most cases. In spite of that, the main problem with the algorithm is

the effect that present outliers in the dataset have on it [19].

Many algorithms have been proposed for reducing the outlier effect in the k -

means algorithm. However, few of them are strict partitioning clustering algorithms,

that is, many of them try to identify the outliers and remove them. In this paper, a

robust center-based clustering algorithm, SSO-C, is presented for strict partitioning.

The SSO-C algorithm tries to optimize two center-based problems. One of them

is k -means, the other one is EMAX, a closely related problem that requires finding

a more robust clustering solution. The two problems are condensed in a single-

objective optimization function considering the correlation of the solutions of both

problems. The function is to be optimized with a global optimization algorithm

called Social Spider Optimization [10] (SSO). Also, an approximation algorithm for

the k -center problem is used as local search for generating initial solutions, that is,

initial places for starting the search. The SSO-C algorithm is a more general version

of a previously proposed algorithm for center-based clustering [27] called SSO-A.

In the experiments, four algorithms were evaluated on thirteen datasets: k -means,

EMAX, SSO-A, and SSO-C. Six synthetic datasets were generated and seven real

others were taken. All the datasets have the true labels of the points, so a clustering

metric called Adjusted Mutual Information [28] was used to evaluate the quality of

each prediction. A number of executions of each algorithm were performed on each

dataset, reporting the mean, median and highest score.

The paper is organized as follows. Section 2 explains the basic background con-

cerning the k -means problem and Lloyd’s algorithm, it also includes a review of the

Social Spider Optimization algorithm. Section 3 defines a more robust variation of

the k -means problem and uses a similar heuristic in Lloyd’s algorithm to approxi-

mately solve it. Then, the algorithm is presented as a solution for a multi-objective

optimization of both problems. The local search strategy used as initialization for

few starting points is also explained. Section 4 shows the experimental results of

the execution performed on four center-based algorithms. The four algorithms were

executed with synthetic and real datasets. Finally, the conclusions are presented in

section 6.
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2 Background

2.1 K-means

K -means is commonly known as a clustering algorithm rather than an optimization

problem. In this work, the term is used interchangeably according to the context.

The k -means optimization problem is defined as:

Let S be a set of n points {x1, x2, . . . , xn} in a metric space (Rd, �2) where d

defines the dimension space and �2 represents the Euclidean metric, and let k > 1

be an integer. Find a set C = {c1, c2, . . . , ck} of k elements in R
d and a matrix

A = [aij ] of size n× k such that the following is minimized:

J1(C,A) =

n∑
i=1

k∑
j=1

aij‖xi − cj‖22 (1)

subject to:

aij ∈ {0, 1} for all i, j (2)

k∑
j=1

aij = 1 for all i. (3)

The first parameter of the problem, the set C, contains k points in the same

space as S. Those points are called the centers. The purpose of each center is to

represent a cluster, so that every point in S is to be assigned to a unique center and

therefore, to a unique cluster. Matrix A defines those assignments. A point xi is

said to be assigned to center cj if and only if the element aij is equal to one. Also,

(3) ensures that every element of the set S is assigned to exactly one center of C.

The objective is to find the set of centers C and the assignments matrix A so

that the sum of the squared Euclidean distances from each point to the center it is

assigned to is minimized.

The k -means problem was shown to be NP-Hard [24]. However, there is a well

known heuristic to approximate a solution for the problem. The heuristic consists

of iteratively solving the following sub-problems:

• P1: Fix A = Â and solve the reduced problem J1(Â, C).

• P2: Fix C = Ĉ and solve the reduced problem J1(A, Ĉ).

P1 and P2 can easily be solved in polynomial time using the following lemmas.

Lemma 2.1 ([20]) Given the k-means problem, let Â = {aij} be fixed. Then the

function J1 is minimized if and only if each center of C is defined as the mean of

the points of S assigned to it. That is, only if

cj =

∑n
i=1 aijxi∑n
i=1 aij

for all j. (4)
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Lemma 2.2 ([20]) Given the k-means problem, let Ĉ = {cj} be fixed. Then the

function J1 is minimized if and only if each point of S is assigned to the closest

center of C to it. That is, only when matrix A has the following entries:

aij =

{
1 if j = argmink ‖xi − ck‖2
0 otherwise

for all i, j. (5)

Solving P1 means defining the set of centers as the centroids of the clusters.

Solving P2 means partitioning the set S according to the Voronoi diagram induced

by the set of centers C. Informally, a Voronoi diagram is a partition of the plain

into cells induced by a set of fixed points where every point inside a cell is closer

to the fixed point that generated such cell than to any other fixed point. See [15]

for more on Voronoi diagrams. The algorithm usually starts by solving problem P2

fixing the centers with random values. The resulting algorithm is often called the

k -means algorithm due to its popularity, also known as Lloyd’s algorithm, named

after Stuart Lloyd [23]. Several methods for better initialization of the centers have

been proposed, being one of the most known the k -means++ algorithm [4]. The

convergence of the k -means can be shown, however, there are no guarantees of

finding the global minimum [18].

2.2 Social Spider Optimization

Optimization problems can sometimes be difficult to solve in a closed form. In this

work, an optimization problem will be faced and a global optimization algorithm will

be needed for solving it. One of the recent swarm intelligence algorithms that had

good results when compared with state-of-the-art algorithms is the Social Spider

Optimization algorithm (SSO) [10]. Swarm intelligence is a collective intelligence

of groups of simple agents dealing with behaviors of swarms [13].

The SSO algorithm is based on the simulation of cooperative behavior of social-

spiders. The algorithm assumes that the entire search space is a communal web,

where each position of a spider represents a solution for the problem. Each spider

i receives a weight wi which represents its solution quality. The information trans-

mitted through the communal web is encoded in form of vibrations. The vibration

made by spider j and perceived by spider i is modeled according to:

V ibij = wj · e−‖si−sj‖22 . (6)

Where the vibration intensity decreases with the squared distance of the spiders

involved. The algorithm distinguishes between male and female agents. The entire

process consists on iteratively emulating three cooperative operators: Female Coop-

erative Operator, Male Cooperative Operator, and Mating Mating Operator. When

performing each of these operators, the spiders change their positions according to

bio-inspired laws in order to explore the search space and find a better solution.

The algorithm was shown to have better performance in run-time and solution

quality than other state-of-the-art global optimization algorithms when evaluated

with a set of well known benchmark functions.
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3 Proposal

3.1 EMAX

The k -means algorithm is one of the simplest and most popular algorithms for

unsupervised machine learning due to its center-based nature. However, center-

based algorithms usually make assumptions of the data such as: clusters are assumed

to be hyperspherical and evenly sized.

For practical usage, the fact that a solution to the k -means problem makes a

partition of the original set induced by the means has a disadvantage: atypical

values have a very large influence over the centers positioning because of the sum

of squared distance in the objective function. Big distances have greater impact

on the objective function in proportion to small distances because the penalization

that each point gets grows with the square of the distance from a fixed point. So if

a point has distance 2d to the center it is assigned to, it will have a much greater

penalty than the double of the penalty that has a point with distance d to the

center it is assigned to. This behavior becomes more important when the set to be

clustered contains many outliers, because an outlier is generally abnormally far of

the typical points and in consequence, of the ideal center. If this point is assigned

to a center that is surrounded by typical points, it will cause its penalization to be

large, making the position of the center to change significantly in the next iteration

to reduce the penalization. This is illustrated in Fig. 1 in which an outlier generates

a readjustment of the center point to decrease the value of the objective function.

In the same figure, it is also shown a special point (geometric median) which we

will talk about later.

A common approach to solve the outlier effect and to create a more robust

algorithm is to change the objective function with the following expression:

n∑
i=1

k∑
j=1

aij‖xi − cj‖1, (7)

where the the set S no longer belongs to (Rd, �2), but to (Rd, �1), being �1 the

1-norm or the Manhattan norm. This function has the advantage of being more

robust in an outlier scenario because it minimizes the within cluster error with

respect to the 1-norm distance metric, as opposed to the squared 2-norm distance

metric. Problems P1 and P2 stay the same for this new problem. So, this allows

meangeometric
median

Figure 1. A center being affected by an outlier.
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using the heuristic mentioned above. When calculating the new centers, the median

in each dimension is taken and then combined. Also, the points of S are assigned

according to the Voronoi diagram induced by the set of centers C with respect to the

1-norm distance metric. This variation of the k -means algorithm is usually called

the k -medians algorithm [21].

An intermediate algorithm between k -means and k -medians can be developed

making a small variation in the objective function. Let’s call this new problem the

EMAX problem and define it as follows:

Let S be a set of n points {x1, x2, . . . , xn} in a metric space (Rd, �2) where d

defines the dimension space and �2 represents the Euclidean metric, and let k > 1

be an integer. Find a set C = {c1, c2, . . . , ck} of k elements and a matrix A = [aij ]

of size n× k such that the following is minimized:

J2(C,A) =

n∑
i=1

k∑
j=1

aij‖xi − cj‖2 (8)

subject to:

cj ∈ R
d for all j (9)

aij ∈ {0, 1} for all i, j (10)

k∑
j=1

aij = 1 for all i. (11)

As can be observed, the only difference between the k -means problem and this

new one is the objective function. Function J1 takes the within cluster sum of

squared Euclidean distances. On the other hand, function J2 takes the within

cluster sum of Euclidean distances.

Until now, there was no formal definition of the EMAX problem or the algo-

rithms used to solve it in the literature. However, the EMAX problem was infor-

mally approached in the past and some algorithms attempting to approximate it

were implemented as part of clustering packages [8]. Also, a global optimization

approach for the problem was proposed in [27] using Social Spider Optimization to

directly approximate it. This algorithm will be used in the experiments with the

name of SSO-A.

The EMAX problem can be handled in another way: the same heuristic used

for the k -means problem can be used to approximately solve the EMAX problem.

First, P1 and P2 can be defined in the same way:

• P1: Fix A = Â and solve the reduced problem J2(Â, C).

• P2: Fix C = Ĉ and solve the reduced problem J2(A, Ĉ).

Then, as in the k -means algorithm, both sub-problems can be iteratively solved

taking the solution from the previous iteration. As before, the way of minimizing

J2 is when the set C is fixed is the same as in the k -means algorithm.
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Lemma 3.1 Given the EMAX problem, let Ĉ = {cj} be fixed. Then the function

J2 is minimized if and only if each point of S is assigned to the closest center of C

to it. That is, only when matrix A has the following entries:

aij =

{
1 if j = argmink ‖xi − ck‖2
0 otherwise

for all i, j. (12)

Proof ( =⇒ ) Since the center assignment for a point is unique and independent of

any other, if J2(Ĉ, A) is minimum, then for each point xi the following expression

is minimum.

k∑
j=1

aij‖xi − cj‖2 (13)

Then by (10) and (11), (13) is equal to ‖xi− cj‖2 for a specific j. Consequently,

this can only be true when j gets the value that minimizes the expression.

(⇐= ) If ‖xi − cj‖2 is minimum, then for every xi (13) is minimum because of

(10) and (11). This implies that J2(Ĉ, A) is minimum for every xi. �

This solves sub-problem P2. The way of solving problem P1 is however, not so

trivial.

Lemma 3.2 Given the EMAX problem, let Â = {aij} be fixed. Then the function

J2 is minimized if and only if each center of C is defined as the geometric median

of the points of S assigned to it. That is, only if

cj ∈ argmin
c∈Rd

n∑
i=1

aij‖xi − c‖2 for all j. (14)

Proof ( =⇒ ) The location of a center does not affect the points that are not

assigned to it, so a center is independent of any other. If J2(C, Â) is minimum, then

for every center cj the following expression is also minimum:

n∑
i=1

aij‖xi − cj‖2. (15)

Therefore, cj must be a point that minimizes (15).

( ⇐= ) If cj is a center that minimizes (15), then the objective function is also

minimum as it is the sum of independent minimums. So J2(C, Â) is minimum for

every cj . �

As can be seen, solving sub-problem P1 requires finding a point that minimizes

the sum of Euclidean distances between a set of fixed points and it. This point is

known as the geometric median. Finding the geometric median of a set of points

is also known as the Fermat-Weber problem. In spite of the ancient nature of

the problem, there are few theoretical guarantees to solve it. The problem was first

studied in the XVII century by Pierre de Fermat for the case of three points [22], and
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despite the elegant construction of the geometric median using ruler and compass

by Evangelista Torricelli, there is not a similar construction for a larger number of

points. In fact, it was shown that even for five points, the geometric median is not

expressible by radicals over the rationals [5] and there is also no exact algorithm that

solves this problem using arithmetic operations and kth roots. The approximation

problem has been widely studied for a great number of points, giving as result many

polinomial time algorithms for the approximate geometric median problem. In [9], a

compilation of many of these algorithms is given and a nearly linear time algorithm

is proposed for finding the geometric median of a set with arbitrary precision.

Many algorithms have been proposed as an approximation scheme for finding the

geometric median. The majority of them exploits the fact that the sum of distances

from the searched point to all the others is a convex function since the distance to a

specific point is also convex. Also, it was proven that the geometric median is unique

when the points are not collinear [26]. Since in most cases the function is convex

and has a single minimum, using a searching algorithm that iteratively decreases

the sum of distances can be thought of “safe” because it cannot get trapped in a

local optimum and will probably reach the global minimum.

A simple and very popular search algorithm for finding the geometric median

is Weiszfeld’s algorithm [29]. The algorithm iteratively creates a new estimate of

the geometric median. The algorithm fails to converge when one of its estimates

falls on one of the points. In practice, the algorithm converges in almost all cases.

Given a set p1, p2, . . . , pt of t points, the algorithm first creates an initial estimate

c(0) for the geometric median ensuring that this point is different from any of the

given points. Then, the algorithm iteratively updates the current estimate c(h) to

c(h+1) using the following rule:

c(h+1) =

(
t∑

i=1

pi

‖pi − c(h)‖2

)/(
t∑

i=1

1

‖pi − c(h)‖2

)
. (16)

An adopted approach in this work is using Weiszfeld’s algorithm to calculate

the geometric median. This algorithm can be replaced with any other that achieves

the same objective. When using Weiszfeld’s algorithm in the EMAX algorithm, the

initial estimate for the geometric median is the mean of the given points.

Finally, a fairly natural criterion for the convergence of the algorithm is, like in

the k -means algorithm, when clusters do not change anymore. The clusters can be

easily recovered given the set C and the matrix A. The entire procedure of EMAX

is shown in Algorithm 1.

Algorithm 1 The EMAX algorithm

Input: A set S ∈ (Rd, �2), k.

Output: A clustering (C1, C2, . . . , Ck) of S.
1: C ← set of initial centers

2: while convergence criterion not reached do

3: Assign each xi ∈ S to cj if j = argmink ‖xi − ck‖2
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4: for j = 1 to k do

5: Let P = {p1, p2, . . . , pm} be the set of points of S assigned to cj
6: cj ← geometric median of P

7: Let (C1, C2, . . . , Ck) be k different empty clusters

8: for i, j such that xi is assigned to cj do

9: Place xi in Cj
return (C1, C2, . . . , Ck)

The values of the centers declared in line 1 of the algorithm can be randomly

initialized. As in k -means, the algorithm iteratively solves P1 and P2 assigning each

point to its closest center and then re-calculating the center to be the geometric

median (using Weiszfeld’s algorithm) until the assignments do not change anymore.

This last step aims to create a more robust algorithm than k -means algorithm when

dealing with multiple outliers in the dataset. Problems k -means and EMAX can

be simultaneously solved using multi-objective optimization. This is very suitable

since both problems have the same parameters and conditions. The only difference

between them is the objective function.

3.2 Multi-objective optimization

Solving a multi-objective optimization requieres very different approaches than

those used to solve single objective problems. A common criterion when solving

multi-objective optimization problems is to search for the Pareto frontier. The ob-

jective is to minimize J1 and J2 simultaneously subject to the same conditions. To

illustrate the Pareto frontier, let’s suppose there were found six feasible solutions

to both problems: s1, . . . , s6 having different values when evaluated with J1 and J2
as shown in Fig. 2.

In multi-objective optimization, it is not usual to find a feasible solution that

J1

J2

s5

s1

s4

s3

s2

s6

Figure 2. A set of feasible solutions for J1 and J2. The Pareto optimal solutions are s1, s4 and s5 since
they are not dominated by any other solution.
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Figure 3. Left: behavior of solutions when evaluated by J1 and J2. Right: The same plot seen near
minimum values.

minimizes all objectives (in this case, J1 and J2). Therefore, the task is to find the

Pareto optimal solutions: those feasible solutions that cannot be improved by any

other solution without degrading at least one of the other objectives. Coming back

to the example, it is clear that s1 is a better candidate when evaluated with the

first objective, i.e. J1(s1) < J1(s2). This is also true when s1 is evaluated with the

second one, i.e. J2(s1) < J2(s2). Thus, we say that s2 is dominated by s1. We see

also see that s3 and s2 are dominated by s4 and that s6 is dominated by s5, but s4
is not dominated by s1 although it is a better candidate when evaluated with J1, i.e.

J1(s1) < J1(s4) because s4 is better when evaluated with J2, i.e. J2(s4) < J2(s1).

The Pareto optimal solutions are those solutions that are not dominated by any

other solution. In this example, the Pareto optimal solutions are s1, s4 and s5.

In order to optimize J1 and J2 simultaneously, it is helpful to visualize a similar

plot of feasible solutions. This plot is shown in Fig. 3.

As can be seen in the plot, those problems are highly related. In many cases, a

solution near the minimum of both problems is not dominated by the majority of the

other solutions. This fact simplifies the problem, as we can take the solutions that

minimizes an objective that takes into account both objectives. This way, we can

convert a multi-objective optimization problem into an optimization problem with

a single objective. A common approach taken is to redefine the objective function

taking a weighted sum of the objectives involved. So, the objective function that

handles both problems is defined as:

F(C,A) = αJ1 + βJ2 (17)

=

n∑
i=1

k∑
j=1

aij
(
α‖xi − cj‖22 + β‖xi − cj‖2

)
.

Where α, β > 0 and α + β = 1. Also, the conditions of the original problems

stay the same. In this way, we can find good solutions for both problems with a

single optimization task.

The problem, as is presented, is not suitable for a continuous optimization al-

gorithm since the domain of search is not continuous and many optimization algo-

rithms require the gradient of the function in each iteration. Some other also require
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the value the function takes in specific points that, in this case, could not be de-

fined. We can define the objective function just in terms of C using the observation

that, as in previous cases, the optimal strategy is to assign each point xi of S to the

closest center of C to xi. The proof of this fact is trivial and follows immediatly

from Lemmas 2.2 and 3.1. So, from this point, the values of the elements of matrix

A will permanently be defined similarly as in previous cases:

aij =

{
1 if j = argmink ‖xi − ck‖2
0 otherwise

for all i, j. (18)

The objective function is now totally dependent on C:

F1(C) =
n∑

i=1

k∑
j=1

aij
(
α‖xi − cj‖22 + β‖xi − cj‖2

)
. (19)

The Social Spider Optimization algorithm described in section 2.2 will be used

for minimizing F1. To make the objective function suitable for the algorithm, the

parameter C of the function can be “converted” into a single variable such that

F1 : R
kd → R. Each spider will be a kd-dimensional vector, being its structure:

(c11, c12, . . . , c1d︸ ︷︷ ︸
c1

, . . . , ck1, ck2, . . . , ckd︸ ︷︷ ︸
ck

) ∈ R
kd.

Being this a minimization problem, the values of bests and worsts (inherent of

the algorithm) are re-defined in the following way:

best s =
N
min
i=1

F1(si), (20)

worst s =
N

max
i=1

F1(si). (21)

Being N the number of spiders in the colony. The lower and upper bounds for

the position values will be chosen taking into account that the position of a center

of C cannot be outside the limits established by the points of S. We can handle this

with the following rule: if c is a parameter of F1, then the minimum value of the ith

component of c will be the minimum value of the component ((i − 1) mod k) + 1

among all points of S. Similarly, the maximum value of the ith component of c will

be the maximum value of the component ((i − 1) mod k) + 1 among all points of

S.
During the execution of the algorithm, the spiders generate vibrations that are

perceived by other colony members. The vibration perceived by spider i as a result

of the information emitted by spider j is modeled through (6). This behavior can

be observed in Fig. 4.

As can be observed, the vibration intensity perceived by some spider decreases

with the square Euclidean distance to the spider that generated it. Depending

on the distances of the points in S, the distances between pairs of spiders can
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Figure 4. The behavior of the vibration intensity is a function of the squared Euclidean distance between
spiders.

be significantly big; making communication impossible for them as the vibration

intensities would effectively be zero. There is no direct approach to handle this

problem in the original SSO algorithm. A proposed strategy to fix this problem

is to consider the maximum distance possible when calculating the vibrations to

be 1.5. For this to be true, each distance dij is replaced with d′ij according to the

following replacement:

d′ij = 1.5 · dij
dmax

. (22)

Where dmax is the maximum distance between spider i and other spider in the

colony. This normalization was chosen because approximately 80% of the area on

the right of the vibration function is between 0 and 1.5.

A desirable property of the spiders is that they can cover a great part of the

search space with the initialization. Depending on the initial positions, some spiders

have greater probability than others of arriving to a local optimum. Initializing the

positions of few spiders near some local optimums of a related function to F may

improve convergence. To do this, and considering that outliers are the center of

attention; we will assume that the set S has a natural property in its structure to

solve a useful problem in facility location and clustering. The problem is called

k -center and the property, Perturbation Resilience.

The k -center problem is to find a set C = {c1, . . . , ck} ⊆ S of centers as to

minimize:

J3(C) = max
x∈S

(
min
c∈C

‖x− c‖2
)
. (23)

The objective function of the k -center problem is considerably different from the

k -means and EMAX problems. The function is also dependent only on C as each

point is to be assigned to the closest center. The set of centers must belong to S,
so it is a combinatorial optimization problem by its nature.

Perturbation resilience [7] is a notion of stability assumed for set S. This prop-
erty implies that if distances between points change due to a small perturbation, the

optimal solution for k -means is the same. Formally, ρ is called an α-perturbation
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of a distance function if for all x, y ∈ S,

‖x− y‖2 ≤ ρ(x, y) ≤ α‖x− y‖2. (24)

Then, the pair (S, �2) satisfies α-perturbation resilience for k -center if for any

α-perturbation of the distance function, the optimal k -center clustering does not

change.

This is a special natural assumption because, when the distances between points

increases by a constant factor, the outlier effect becomes bigger, specially when

evaluated with J2. So, this assumption decreases this possibility.

The following theorem is helpful when trying to find optimal solutions for the

k -center problem under perturbation resilience.

Theorem 3.3 ([6]) Given a clustering instance (S, �2) satisfying α-perturbation

resilience for k-center, and a set C of k centers which is an α-approximation factor

for k-center. Then the Voronoi partition induced by C is the optimal clustering.

This result states that an α-approximation algorithm for k -center will give an

optimal solution assuming perturbation resilience for S under the Euclidean distance

metric. Exact and approximations algorithms have been designed for the k -center

problem [1]. Optimal algorithms in approximation factor and run-time have also

been found. In [17], it was shown that there is no polynomial time algorithm with

an approximation factor less than 2 for the k -center problem unless P 
= NP; also,

a 2–approximation greedy algorithm for the problem was presented. The algorithm

successfully finds a 2-approximation solution if the triangular inequality holds, which

is the case for (S, �2).
With this 2-approximation greedy algorithm we can generate solutions for the

k -center problem as a local search strategy for some individuals of the initial pop-

ulation. The entire procedure of the SSO-C algorithm is shown in Algorithm 2.

Algorithm 2 The SSO-C algorithm

Input: A set S ∈ (Rd, �2), k, α, ns, nit.

Output: A clustering (C1, C2, . . . , Ck) of S.
1: s← (

−→
0 ,
−→
0 , . . . ,

−→
0︸ ︷︷ ︸

ns

)

2: for j = 1 to k do

3: C ← Greedy k-center(S, k)
4: si ← −→

C

5: β ← 1− α

6: F1(C) =
∑n

i=1

∑k
j=1 aij

(
α‖xi − cj‖22 + β‖xi − cj‖2

)
7: x← SSO(F1(C), s, ns, nit)

8: Get C = {c1, c2, . . . , ck} from x

9: Let (C1, C2, . . . , Ck) be k different empty clusters

10: for i, j such that xi is assigned to cj do

11: Place xi in Cj
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return (C1, C2, . . . , Ck)

The Algorithm 2 starts by creating ns empty spiders in line 1. Lines 2 to 4

initialize the value of the first k spiders with a 2-approximation solution for the k -

center problem. As the value of α is provided as input, the value of β is calculated in

line 5. Then, in lines 6 and 7 the objective function is defined and the values of the

empty spiders are initialized with uniform random values in the SSO algorithm. The

global optimization is then performed and the best spider recovered. The clusters

are then obtained in lines 10 and 11. The output of the algorithm is a clustering of

set S.

3.3 Datasets

For experimental purposes, a set of six synthetic datasets were generated. Their

characteristics are detailed below. Key information of the datasets is shown in

Table 1. A plot of the synthetic datasets can be seen in Fig. 5. Also, a set of seven

real datasets were taken from the UCI Machine Learning Repository [14]. Some

information about the real datasets is shown in Table 2.

The first synthetic dataset is relativeley simple for a basic clustering algorithm.

The dataset contains three clearly separated clusters. The second synthetic dataset

contains two close clusters with two far outliers. The third synthetic dataset con-

tains nine clusters generated according to a multivariate Gaussian probability dis-

tribution using the mean μ and covariance matrix Σ as specified in Table 1. The

fourth synthetic dataset contains three clusters generated according to a Gamma

distribution for each dimension using the shape a and rate b as specified in Table 1.

Finally, the fifth and sixth datasets were generated according to the multivariate

Gaussian probability distribution using the μ and Σ shown in Table 1.

4 Experiments

The four algorithms: k -means, EMAX, SSO-A [27], and SSO-C were evaluated with

six synthetic and seven real datasets from UCI Machine Learning Repository [14]:

Iris, Vowel Indian, Crude Oil, Balance Scale, Breast Cancer, and Wine.

The value of the parameter α in the SSSO-C algorithm was fixed to be 0.2.

This way, the algorithm gives the second problem about 80% of the total priority.

For evaluating the cluster quality, the Adjusted Mutual Information metric [28] was

used with the labels predicted by the clustering algorithms and the true labels. The

range of the metric varies from −1 to 1, being 0 a random prediction of the clusters

and 1 a perfect prediction (negative values can arise in certain circumstances). For

each algorithm, a total of fifty executions were performed on every dataset. For

each dataset, the maximum, median, and mean values (using the AMI metric) of

the executions are shown in Table 3, where the best values of the row are highlighted

in bold.

Numerical experiments were conducted using the C Language (gcc version 8.1.0
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D
a
ta

1

Space Points per cluster

R
2

Cluster 1 50 points

Cluster 2 50 points

Cluster 3 50 points

D
a
ta

2 Space Points per cluster

R
2

Cluster 1 40 points

Cluster 2 40 points

D
a
ta

3

Space Points per cluster μ Σ

R
2

Cluster 1 100 points (−2, 2)

⎡
⎣1.69 0

0 1.69

⎤
⎦

Cluster 2 100 points (0, 2)

Cluster 3 100 points (2, 2)

Cluster 4 100 points (−2, 0)
Cluster 5 100 points (0, 0)

Cluster 6 100 points (2, 0)

Cluster 7 100 points (−2,−2)
Cluster 8 100 points (0,−2)
Cluster 9 100 points (2,−2)

D
a
ta

4

Space Points per cluster a b

R
2

Cluster 1 100 points 2 1/2

Cluster 2 100 points 2 1

Cluster 3 100 points 2 2/3

D
a
ta

5

Space Points per cluster μ Σ

R
2

Cluster 1 200 points (1, 1) ⎡
⎣0.1 0

0 0.1

⎤
⎦Cluster 2 200 points (2, 2)

Cluster 3 200 points (3, 3)

Cluster 4 200 points (1, 3)

Cluster 5 200 points (3, 1)

D
a
ta

6

Space Points per cluster μ Σ

R
2

Cluster 1 400 points (2, 2) ⎡
⎣1.44 0

0 1.44

⎤
⎦Cluster 2 400 points (6, 6)

Cluster 3 400 points (6, 2)

Table 1
Information about the synthetic datasets

Dataset Iris Vowel Oil Balance Cancer Wine Glass

Dimension 4 3 5 4 30 13 8

Clusters 3 6 3 3 2 3 6

Points 150 871 56 625 569 178 214

Table 2
Information about the real datasets

built by MinGW-W64) on a 3.40GHz Intel Core i7-6700 with 16GB of RAMmemory

and running Windows 10 version 1809 as operating system.
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Figure 5. Synthetic datasets used to perform the experiments.

Synthetic datasets Real datasets

Dataset SSO-A k-means EMAX SSO-C Dataset SSO-A k-means EMAX SSO-C

S. Dataset 1

Maximum 1.000 1.000 1.000 1.000

Iris

Maximum 0.793 0.748 0.787 0.829

Median 1.000 1.000 1.000 1.000 Median 0.713 0.748 0.757 0.762

Mean 1.000 1.000 1.000 1.000 Mean 0.716 0.743 0.763 0.765

S. Dataset 2

Maximum 1.000 0.854 1.000 1.000

Vowel Indian

Maximum 0.517 0.477 0.509 0.517

Median 1.000 0.802 1.000 1.000 Median 0.451 0.459 0.490 0.453

Mean 0.964 0.813 0.664 1.000 Mean 0.445 0.463 0.493 0.452

S. Dataset 3

Maximum 0.353 0.341 0.352 0.366

Crude Oil

Maximum 0.250 0.236 0.272 0.250

Median 0.336 0.340 0.342 0.342 Median 0.204 0.182 0.272 0.182

Mean 0.336 0.338 0.343 0.343 Mean 0.201 0.190 0.249 0.189

S. Dataset 4

Maximum 0.806 0.770 0.813 0.814

Balance Scale

Maximum 0.274 0.160 0.134 0.253

Median 0.761 0.770 0.813 0.790 Median 0.214 0.115 0.117 0.109

Mean 0.719 0.770 0.813 0.784 Mean 0.223 0.106 0.114 0.113

S. Dataset 5

Maximum 0.888 0.885 0.882 0.898

Breast Cancer

Maximum 0.453 0.422 0.458 0.440

Median 0.863 0.881 0.882 0.884 Median 0.351 0.422 0.458 0.374

Mean 0.852 0.882 0.882 0.882 Mean 0.322 0.422 0.458 0.369

S. Dataset 6

Maximum 0.770 0.756 0.758 0.779

Wine

Maximum 0.432 0.423 0.427 0.432

Median 0.752 0.754 0.755 0.755 Median 0.413 0.423 0.419 0.423

Mean 0.748 0.754 0.755 0.757 Mean 0.419 0.408 0.414 0.417

Glass

Maximum 0.301 0.316 0.319 0.389

Median 0.177 0.274 0.319 0.318

Mean 0.165 0.290 0.319 0.320

Table 3
Results of the experiments performed over the four algorithms

5 Discussion

From Table 3, the following can be observed: EMAX has better results than k -

means in almost all datasets regarding maximum, median, and mean values; SSO-C

has better results than SSO-A in almost all datasets regarding maximum, median,
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Dataset Control i Algorithm Rank p-value α/i Dataset Control i Algorithm Rank p-value α/i

S. Dataset 2

SSO-C 3 k-means 3.63 1.29E-14 0.017

Vowel

EMAX 3 SSO-A 3.18 1.48E-15 0.017

(Rank: 2 EMAX 2.49 9.95E-04 0.025 (Rank: 2 SSO-C 2.96 1.03E-12 0.025

1.64) 1 SSO-A 2.24 2.00E-02 0.050 1.12) 1 k-means 2.74 3.51E-10 0.050

S. Dataset 3

SSO-C 3 SSO-A 3.08 4.04E-05 0.017

Oil

EMAX 3 k-means 3.17 4.30E-17 0.017

(Rank: 2 k-means 2.76 4.00E-03 0.025 (Rank: 2 SSO-C 3.17 4.30E-17 0.025

2.02) 1 EMAX 2.14 6.40E-01 0.050 1.00) 1 SSO-A 2.66 1.28E-10 0.050

S. Dataset 4

EMAX 3 SSO-A 3.23 1.59E-16 0.017

Balance

SSO-A 3 k-means 3.34 2.58E-19 0.017

(Rank: 2 k-means 3.22 2.20E-16 0.025 (Rank: 2 SSO-C 3.02 9.49E-15 0.025

1.10) 1 SSO-C 2.45 1.71E-07 0.050 1.02) 1 EMAX 2.62 5.76E-10 0.050

S. Dataset 5

EMAX 3 SSO-A 3.56 4.58E-11 0.017

Cancer

EMAX 3 SSO-A 3.32 2.58E-19 0.017

(Rank: 2 k-means 2.54 8.00E-03 0.025 (Rank: 2 SSO-C 3.23 5.78E-18 0.025

1.86) 1 SSO-C 2.04 4.80E-01 0.050 1.00) 1 k-means 2.45 1.96E-08 0.050

S. Dataset 6

EMAX 3 k-means 2.87 3.16E-04 0.017

Wine

SSO-A 3 k-means 3.09 6.54E-04 0.017

(Rank: 2 SSO-A 2.86 3.66E-04 0.025 (Rank: 2 EMAX 2.47 3.10E-01 0.025

1.94) 1 SSO-C 2.33 1.30E-01 0.050 2.21) 1 SSO-C 2.23 9.30E-01 0.050

Iris

SSO-C 3 SSO-A 3.51 2.76E-15 0.017

Glass

EMAX 3 SSO-A 3.92 3.39E-21 0.017

(Rank: 2 k-means 3.22 1.22E-11 0.025 (Rank: 2 k-means 2.66 4.87E-06 0.025

1.47) 1 EMAX 1.80 2.00E-01 0.050 1.48) 1 SSO-C 1.94 7.00E-02 0.050

Table 4
Results of the Holm Test

and mean values. When all algorithms are considered, SSO-C showed bests results

in almost all datasets regarding the maximum values. Also, for median and means

values, EMAX and SSO-C have the best results the same number of cases (7 out of

13).

Statistical tests were performed (according to [11], see also [16] and [12]) over the

results of the algorithms (samples of 50 elements) in the following way: (a) First, the

Friedman test is performed to test the null hypothesis that algorithms, used in the

experiments, have the same performance, (b) When the null hypothesis of Friedman

test is rejected, then the Holm test is performed to test the null hypothesis that a

control algorithm has the same performance regarding some other algorithm.

For performing the statistical test the CONTROLTEST package

(https://sci2s.ugr.es/sicidm) was used with a significance level of α = 0.05

as default. The null hypothesis of the Friedman test was rejected in all datasets,

except in the Synthetic Dataset 1. Table 4 presents the results of the Holm test,

where algorithms in bold represent those cases where the null hypothesis was

rejected.

From Table 4, the following can be observed: EMAX is the control algorithm

in 7 cases out of 12, then, when EMAX is compared to SSO-C, the null hypothesis

is rejected just in 4 cases out of 7, that is, EMAX is the best performing algorithm

with a statistically significant difference in just 4 cases.

6 Conclusions

In this paper, two algorithms were presented. In the first one (EMAX algorithm), a

similar heuristic used in the k -means algorithm is used to solve the EMAX problem.

The second one (SSO-C algorithm) is based on the Social Spider Optimization

algorithm for approaching multi-objective problems. The SSO-C algorithm is used

to minimize the weighted sum of two objective functions: those defined in the k -
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means and EMAX problems. For the SSO-C algorithm, an approximation algorithm

(for the k -center problem) was used in order to initialize a small part of the initial

population.

Results of the experiment showed that the EMAX algorithm outperforms the

k -means algorithm, also, the SSO-C algorithm outperforms the SSO-A algorithm.

When all algorithms were compared, SSO-C showed to be suitable for finding best

maximum values, but when it comes to median and mean values, EMAX is the one

with best scores. This led us to perform statistical tests (Friedman and Holm tests)

in order to discover which one is better: SSO-C or EMAX. In the results of the

Holm test, EMAX appears as the control algorithm in 7 cases out of 12, of which,

EMAX has statistically significant difference regarding SSO-C in just 4 cases.

As a future work, we plan to perform several experiments with more sophisti-

cated datasets, with higher dimensionality and size. Also, we plan to develop other

initialization procedures (such as Opposition-Based Learning [25,3]) for SSO-C in

order to improve convergence results and robustness. For the EMAX problem, we

plan to prove convergence and NP Hardness.
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